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Introduction

•Datasets A ∈ Rn×d these days are huge and high-dimensional, where n is the
number of data and d is the data dimension.
•Crucial to decrease size of the data to save on storage and computation.
•Two ways to reduce datasets:
•Dimensionality reduction – reducing d.
•Coresets – decreasing n (typically a weighted subset of the dataset).
•This work
• Introduces a novel dimensionality reduction technique for shape �tting problems

with the sum of distance metric.
•Gives a coreset construction for k-median and k-subspace approximation using our

dimensionality reduction.

Background
Dimensionality Reduction

•Let d′� d to attain signi�cant size reduction

•A′ is task dependent. E.g. if we want to preserve pairwise `2 distances, G can be a
random Gaussian of size d×O(log(n)/ε2) by JL lemma.

Shape Fitting

•Given data set A and a set of “shapes” S, we want to �nd S ∈ S that minimizes
d(A, S) =

∑
i

d (ai, S) =
∑
i

min
s∈S

d (ai, s) .

Here “shape” is just any set of points.

Examples of Shapes

•S is a set of k points→ k-median

•S is a k-dimensional subspace→ k subspace approximation

Related Work
• Sohler and Woodru� [1] give an algorithm for dimensionality reduction with a

running time involving an exp(poly(k/ε)) factor. We remove the exp(poly(k/ε))
term in our results.
•Huang and Vishnoi [2] gave an e�cient coreset construction for k-median problem.

But their algorithm works solely for coreset construction, whereas our dimension
reduction can be used for more tasks.

Our Results
Given a dataset A ∈ Rn×d, there exists a poly(k/ε)-dimensional subspace P such that
projections of each point on P and distance of each point to the subspace P are suf-
�cient to approximate d(A, S) for any shape S that lies in a k dimensional subspace.
Such a subspace can be found in time O(nnz(A)/ε2 + (n + d) poly(k/ε))
•We also give an algorithm that runs in time nd log(nd)+ (n + d) poly(k/ε) which is

faster when nnz(A) ≈ nd.
•Using our dimensionality reduction, small coresets can be constructed for several

problems.
•We also show that the coreset construction of [2] can be implemented in

O(nnz(A) + (n + d) poly(k/ε)) time. This does not need our main result.

Techniques
•We adaptively compute 1 + ε approximate bicriteria solutions for subspace

approximation with sum-of-distances cost and show that the sum of the bicritera
subspaces after O(1/ε2) iterations has the desired properties.
• For computing 1 + ε approximate solutions, we use lopsided embeddings, Lewis

weight sampling and residual sampling.

Experiments

•We generate a random k-median dataset with 10000 points in R10000 and compute a
100 dimensional subspace using our algorithm. We then compute approximate cost
of a center set using our subspace, SVD subspace and a random subspace.

•We run the same experiment on a randomly sampled subset of the CoverType
dataset.
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