Dimensionality Reduction for Sum-of-Distances Metric

Introduction

e Datasets A € R"*“ these days are huge and high-dimensional, where 7 is the
number of data and d is the data dimension.

e Crucial to decrease size of the data to save on storage and computation.

e Two ways to reduce datasets:

® Dimensionality reduction - reducing d.
® Coresets — decreasing n (typically a weighted subset of the dataset).

e This work

e Introduces a novel dimensionality reduction technique for shape fitting problems
with the sum of distance metric.

e Gives a coreset construction for k-median and k-subspace approximation using our
dimensionality reduction.

Background

Dimensionality Reduction

o Let d’ < d to attain significant size reduction
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o A’ is task dependent. E.g. if we want to preserve pairwise ¢, distances, G can be a
random Gaussian of size d x O(log(n)/&?) by JL lemma.

Shape Fitting
e Given data set A and a set of “shapes” G, we want to find S € G that minimizes

d(A,S) =>_d(a;S) = erréigd (aj, s) .

Here “shape” is just any set of points.
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Examples of Shapes

e S is a set of k points — k-median

¢ S is a k-dimensional subspace — £ subspace approximation

Related Work

e Sohler and Woodruft [1] give an algorithm for dimensionality reduction with a
running time involving an exp(poly(k/e)) factor. We remove the exp(poly(k/c))
term in our results.

e Huang and Vishnoi [2] gave an efficient coreset construction for k-median problem.
But their algorithm works solely for coreset construction, whereas our dimension
reduction can be used for more tasks.

Our Results

Given a dataset A € R"*%, there exists a poly(k/e)-dimensional subspace P such that

Experiments

R and compute a

e We generate a random k-median dataset with 10000 points in
100 dimensional subspace using our algorithm. We then compute approximate cost

of a center set using our subspace, SVD subspace and a random subspace.

@)
©

e ——— B —mmm———— o ————— K ———— 7
o N --#- QOur subspace
s \\
¢ 170000 - \ ----Actual
S ‘ -+~ Random sub
O \ andom subspace
o \
+5 160000 - N -¥- SVD subspace
&) RN
o .'\ \
) \\\ \v
= 150000 - ~ao .

N N\

D S \
“ | TTe=—l__ - \\\
O 140000 - S~ N
O RS
2 S —— o =
C | h SEEEEE =
.-I:‘ 130000_ I I | I I I I 1 |
it 200 30 40 50 60 70 80 90 100

Dimension of the Subspace

e We run the same experiment on a randomly sampled subset of the CoverType
dataset.

projections of each point on P and distance of each point to the subspace P are suf-

ficient to approximate d( A, S) for any shape .S tha

' lies in a & dimensional subspace.

Such a subspace can be founc

in time O(nnz(A)/e* + (n + d) poly(k/¢))

» We also give an algorithm that runs in time ndlog(nd)+ (n + d) poly(k /) which is

faster when nnz(A) ~ nd.

e Using our dimensionality re
problems.

duction, small coresets can be constructed for several

e We also show that the coreset construction of [2] can be implemented in
O(nnz(A) + (n + d) poly(k/e)) time. This does not need our main result.

e We adaptively compute 1 +

Techniques

e approximate bicriteria solutions for subspace

approximation with sum-of-distances cost and show that the sum of the bicritera
subspaces after O(1/¢?) iterations has the desired properties.

e For computing 1 + € approximate solutions, we use lopsided embeddings, Lewis
weight sampling and residual sampling.
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