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Introduction

We give an algorithm for the reduced-rank regression problem:

min
rank-k X

‖AX − B‖2

given matrices A ∈ Rn×c and B ∈ Rn×d.

Just the usual multi-response linear regression but with

Operator Norm error instead of Frobenius Norm error in

addition to having a rank constraint.

Can also be thought of as finding the best rank k
approximation for matrix B with all the columns being

spanned by columns of A.

No algorithms with running time depending on input-sparsity

were known earlier.

For k � min(c, d), the running time of our algorithm is

dominated by

(nnz(A) + nnz(B) + c2) · k/ε1.5 + cω

up to logarithmic factors. Here nnz(·) denotes the number of

nonzero entries.

We give an analysis for Block Krylov Iteration algorithm to

obtain a low rank approximation with approximate

matrix-vector product oracle.

We reduce the regression problem to low rank approximation

of an appropriate matrix, construct an approximate

matrix-vector product oracle for this matrix, and then obtain a

1 + ε approximate solution to the regression problem

PreviousWork

Sou and Rantzer, in control theory literature, studied the

problem and gave the following equivalence:

There is a rank k matrix X with ‖AX − B‖2 < β if and only if

σk+1(AA+B(β2I − ∆)−1/2) < 1.

Here ∆ = BT(I − AA+)B and A+ is theMoore-Penrose

pseudoinverse.

From their result, given a rank k matrix Y with

‖Y − AA+B(β2I − ∆)−1/2‖2 < 1, (1)

we can compute a rank k matrix X satisfying ‖AX − B‖2 < β.

A Key Takeaway

Surprisingly, Sou and Rantzer also show that

inf
rank-k X

‖AX − B‖2 =: Opt = min(σk+1(B), ‖(I − AA+)B‖2)

So, Opt is equal to a simple lower bound on its value

Our Idea

We can find a Y that satisfies (1) by computing Singular

Value Decomposition (SVD) of

M := AA+B(β2I − ∆)−1/2.

Computing the matrix M and then its SVD is very slow and

cannot make use of sparsity of the matrices A and B.

We relax the requirement on Y and show that if Y is a rank

k matrix satisfying

‖Y − AA+B(β2I − ∆)−1/2‖2 < 1 + ε

then we can find a rank k matrix X satisfying

‖AX − B‖2 < (1 + Cε)β
for an absolute constant C .

So, for β = (1 + ε)Opt and M = AA+B(β2I − ∆)−1/2 we
have σk+1(M) < 1 and if Y is a rank k matrix with

‖Y − M‖2 ≤ (1 + ε)σk+1(M) < 1 + ε,

we can construct a 1 + O(ε) approximation.

So we just have to find a 1 + ε approximate low rank

approximation of matrix M .

Can use Block Krylov Iteration algorithm of Musco and

Musco to compute such a matrix Y .

Issue: Block Krylov Iteration algorithm needs exact

matrix-vector products with matrices M and MT—very
slow to compute.

We resolve this by showing that Block Krylov iteration

algorithm works even with approximate matrix-vector

products.

This is the first analysis for Block Krylov Iteration algorithm

that works with worst-case approximate matrix-vector

products.

Block Krylov Iteration

We prove the following result that shows Block Krylov Iteration

algorithm can be run with approximate matrix-vector products.

Theorem

Given any vectors x and y, if we can compute x′ and y′ with

‖x′ − Mx‖2 ≤ α‖M‖2‖x‖2
‖y′ − MTy‖2 ≤ α‖MT‖2‖y‖2

in time T (α), then in time

≈ T

(
ε

κq · poly(k)

)
qk

for q ≈ 1/
√

ε, we can compute a rank k matrix M ′ with

‖M − M ′‖2 ≤ (1 + ε)σk+1(M).

Wrap up

There is still the issue that we cannot compute even

approximate matrix-vector products with the matrices M and

MT fast.

We instead approximate (1 − x)−1/2 with a suitable low

degree polynomial and define another matrix M̃ using this

polynomial.

We show that a low rank approximation of M̃ can also be

used to construct a solution for the regression problem.

Using High Precision Regression techniques, we show that

fast approximate matrix-vector product oracles can be

constructed for matrix M̃ .
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