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Introduction

We give an algorithm for the reduced-rank regression problem:

min ||AX — Bl|s
rank-k X

given matrices A € R"*¢ and B € R"*¢,

= Just the usual multi-response linear regression but with
Operator Norm error instead of Frobenius Norm error in
addition to having a rank constraint.

= Can also be thought of as finding the best rank &
approximation for matrix B with all the columns being
spanned by columns of A.

= No algorithms with running time depending on input-sparsity
were known earlier.

= For k < min(c, d), the running time of our algorithm is
dominated by

(Nnz(A) + nnz(B) + ¢*) - k/e'® + &

up to logarithmic factors. Here nnz(-) denotes the number of
nonzero entries.

= We give an analysis for Block Krylov Iteration algorithm to
obtain a low rank approximation with approximate
matrix-vector product oracle.

= We reduce the regression problem to low rank approximation
of an appropriate matrix, construct an approximate
matrix-vector product oracle for this matrix, and then obtain a
1 + ¢ approximate solution to the regression problem

Previous Work

A Key Takeaway

= Surprisingly, Sou and Rantzer also show that

inf ||AX — Blls =: Opt = min(op1(B), ||[({ — AAT)B||9)
rank-k X

= S0, Opt is equal to a simple lower bound on its value

Our Idea

= Sou and Rantzer, in control theory literature, studied the
problem and gave the following equivalence:

There is a rank k matrix X with ||AX — Bl|s < g if and only if
opi (AATB(B2 — A7) < 1.

Here A = BT(I — AA1)B and AT is the Moore-Penrose
pseudoinverse.

= From their result, given a rank k£ matrix Y with
|y — AATB(2T — A)TV2)y < 1, (1)
we can compute a rank k matrix X satisfying ||AX — Bl|2 < B.

= We can find a Y that satisfies (1) by computing Singular
Value Decomposition (SVD) of

M = AATB(BI — A)1/2

= Computing the matrix M and then its SVD is very slow and
cannot make use of sparsity of the matrices A and B.

= We relax the requirement on Y and show that if Y is a rank
k matrix satistying

IV — AATB(BA — A Y2y <146
then we can find a rank k matrix X satisfying
|AX — B2 < (1+C¢)B

for an absolute constant C.
= So, for B = (1+¢)Opt and M = AATB(B2I — A)~1/2 we
have o 1(M) < 1and if Y is a rank k& matrix with

1Y — Mo < (14+¢€)op1(M) <1+c¢,

we can construct a 1+ O(g) approximation.

= S0 we just have to find a 1 + ¢ approximate low rank
approximation of matrix M.

= Can use Block Krylov Iteration algorithm of Musco and
Musco to compute such a matrix Y.

= |[ssue: Block Krylov Iteration algorithm needs exact
matrix-vector products with matrices M and M T—very
slow to compute.

= We resolve this by showing that Block Krylov iteration
algorithm works even with approximate matrix-vector
products.

= This is the first analysis for Block Krylov Iteration algorithm
that works with worst-case approximate matrix-vector
products.

Block Krylov Iteration

We prove the following result that shows Block Krylov Iteration
algorithm can be run with approximate matrix-vector products.

Theorem

Given any vectors x and vy, if we can compute 2’ and ¢/ with
" — Mz|s < al| M|z
ly' = MTylla < ol M2yl

in time T'(«), then in time

E
~ T k
<qu : polv(k)> !

for g ~ 1//€, we can compute a rank k& matrix M’ with
|M = My < (1+€)og 1 (M).

Wrap up

= There is still the issue that we cannot compute even

approximate matrix-vector products with the matrices M and
MT fast.

» We instead approximate (1 — x) /2 with a suitable low
degree polynomial and define another matrix M using this
polynomial.

* We show that a low rank approximation of M can also be
used to construct a solution for the regression problem.

= Using High Precision Regression techniques, we show that
fast approximate matrix-vector product oracles can be
constructed for matrix M.
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