Online Directed Spanners and Steiner Forests

Directed Pairwise Spanners

- Each edge e has length $\ell_e \in \mathbb{R}_{>0}$.
- Edge lengths are <u>uniform</u> if $\ell_e = 1$ for all e.
- Goal: pick minimum #edges such that $d(s_i, t_i) \leq d_i$ for all *i*.

Online Directed Pairwise Spanners

- The graph is known offline.
- (s_i, t_i) and d_i arrive <u>one at a time</u>.
- Goal: irrevocably pick minimum total #edges such that $d(s_i, t_i) \leq d_i$.

Directed Steiner Forests

- Each edge e has $\underline{\text{cost}} \ c_e \in \mathbb{R}_{>0}$.
- Edge costs are <u>uniform</u> if $c_e = 1$ for all e.

Goal: pick edges e so that

- the total cost $\sum_{e \text{ is picked}} c_e$ is minimized and
- there is an $s_i \rightsquigarrow t_i$ path for all i.

Online Directed Steiner Forests

• The graph is known offline.

• (s_i, t_i) arrives <u>one at a time</u>.

Goal: irrevocably pick edges e so that

- the total cost $\sum_{e \text{ is picked}} c_e$ is minimized and
- there is an $s_i \rightsquigarrow t_i$ path for all i.

Elena Grigorescu, Young-San Lin, and Kent Quanrud

Purdue University

	C	Our Results (text	in
	Setting	Pairwise Spanners	Dir
		$\tilde{O}(n^{3/5+\varepsilon})$ (uniform)	$\tilde{O}($
	Offline	[CDKL17']	O(

	$ ilde{O}(n^{4/5}), ilde{O}(k^{1/2+arepsilon}) (ext{uni.}) $	O(
	$ ilde{O}(n^{4/5})$	$ ilde{O}($
Online	$\tilde{O}(n^{2/3+\varepsilon})$ (uniform)	$\tilde{O}($
	$\tilde{O}(k^{1/2+\varepsilon})$ (uniform)	

n: number of vertices, k: number of terminal pairs

All our algorithms run in polynomial time. $\tilde{O}(k^{1/2+\varepsilon})$ (uniform) is deterministic while our other algorithms are randomized.

Main Tool: Online Covering

minimize $\mathbf{c}^T x$ over $x \in \mathbb{R}^n_{>0}$ s.t. $Ax \ge \mathbf{1}$. where $A \in \mathbb{R}_{>0}^{m \times n}$ consists of *m* covering constraints and $\mathbf{c} \in \mathbb{R}_{>0}^{n}$.

In the online setting, the covering constraints arrive <u>one at a time</u>.

Goal: Irrevocably increase x such that all covering constraints are satisfied and the objective is approximately minimized.

This problem naturally extends to the setting where violating constraints are found by a separation oracle.

Theorem (Online Covering)

There exists an $O(\log n)$ -competitive algorithm for online covering which encounters polynomially many violating constraints.

• Proof Sketch (Following Buchbinder and Naor 05'): Consider the dual packing problem. Increment the covering variables in exponential load w.r.t. the dual variables until the arriving covering constraint is satisfied by a factor of 2. Use the relation between the primal and dual solutions.

red and blue):

rected Steiner Forests

 $(n^{26/45+\varepsilon})$ (uniform) [AB18']

 $(n^{2/3+\varepsilon})$ [BBMRY13']

 $(k^{1/2+\varepsilon})$ [CEGS11']

 $(k^{1/2+\varepsilon})$ [CEKP15']

 $(n^{2/3+\varepsilon})$ (uniform)

For the online pairwise spanner problem with uniform edge lengths, there exists a deterministic polynomial time algorithm with competitive ratio $\tilde{O}(k^{1/2+\varepsilon})$ for any constant $\varepsilon > 0$.

Proof Sketch:

and the height reduction technique

Using ideas from [CDKL17'] (density \rightarrow global approximation)

Steiner forest

Using ideas from [CEKP15']

online pairwise spanner on G = (V, E)

red: factor lost $\mathsf{polylog}(n)$ online Steiner forest on H' (undirected forest)

Our Main Theorem

• Existence of an $O(\sqrt{k})$ -approximate junction tree solution

• Reduction from online directed spanner to <u>online Steiner</u> <u>label cover</u>

• Reduction online Steiner label cover to online undirected

Proof Sketch by a Picture

Online Covering LP

Overall: $\tilde{O}(k^{1/2+\varepsilon})$ -competitive