

Abstract

We consider the problem of finding an approximate solution to ℓ_1 regression while only observing a small number of labels. Given an $n \times d$ unlabeled data matrix X, we must choose a small set of $m \ll n$ rows to observe the labels of, then output an estimate $\widehat{\beta}$ whose error on the original problem is within a $1+\varepsilon$ factor of optimal. We show that sampling from X according to its Lewis weights and outputting the empirical minimizer succeeds with probability $1-\delta$ for $m > O(\frac{1}{\varepsilon^2}d\log\frac{d}{\varepsilon\delta})$. This is analogous to the performance of sampling according to leverage scores for ℓ_2 regression, but with exponentially better dependence on δ . We also give a corresponding lower bound of $\Omega(\frac{d}{\varepsilon^2} + (d + d))$ $\frac{1}{\varepsilon^2}$) log $\frac{1}{\delta}$).

Active LAD Regression

There is a full training set $\{X_i\}_{1 \le i \le n}$, but **no observed** $\{y_i\}_{1 \le i \le n}$. **Pick** index set I of size m to query, so you see $\{y_i\}_{i\in I}$ with $m \ll n$. Return β such that with high probability

Strategy

- Pick a distribution over [n] and sample $m \ll n$ elements, sample and re-weight according to that distribution to preserve expectations.
- Sampling represented by "sampling-and-reweighting" matrix S, so

$$X \xrightarrow{\text{Sampled}} SX$$

• return $||SX\beta - Sy||_1$.

ℓ_1 Regression via Lewis Weight Subsampling Aditya Parulekar, Advait Parulekar, Eric Price UT Austin

Fig. 3: Representation of the problem: on the left, \mathbb{R}^n , with green ℓ_1 balls projecting y onto the red column space of X. On the right, the same but for the sampled space in \mathbb{R}^m

Proof Sketch

Three main steps:

• Symmetrize:

$$\mathbb{E}_{S} \left[\left(\max_{\|X\beta^{*}-X\beta\|=1} \left| \left(\|SX\beta^{*}-Sy\|_{1} - \|SX\beta-Sy\|_{1} \right) - \left(\|X\beta^{*}-y\|_{1} - \|X\beta-y\|_{1} \right) \right| \right] \le 2^{l} \mathbb{E}_{S,\sigma} \left[\left(\max_{\|X\beta^{*}-X\beta\|=1} \left| \sum_{k} \sigma_{k} \sigma_{k} \right| \right) \right]$$
e rows sampled by S , and σ_{k} are independent Rademacher random variables (±1 w.p. 1/2).

where i_k are the • Contraction Lemma: effectively a triangle inequality that removes the effect of y

$$2^{l} \mathop{\mathbb{E}}_{S,\sigma} \left[\left(\max_{\|X\beta^{*}-X\beta\|=1} \left| \sum_{k} \sigma_{k} \left(\frac{|x_{i_{k}}^{\top}\beta^{*}-y_{i_{k}}|}{p_{i_{k}}} - \frac{|x_{i_{k}}^{\top}\beta-y_{i_{k}}|}{p_{i_{k}}} \right) \right| \right)^{l} \right] \leq 2^{2l+1} \mathop{\mathbb{E}}_{S,\sigma} \left[\left(\max_{\|X(\beta^{*}-\beta)\|_{1}=1} \left| \sum_{k} \sigma_{i_{k}} \frac{x_{i_{k}}}{p_{i_{k}}} - \frac{x_{i_{k}}}{p_{i_{k}}} \right| \right)^{l} \right] \right]$$

• Subspace embedding argument: we are in the column space of SX now, so we can modify and apply subspace embedding results

Proof Approach

- Cannot show $\|\beta^* \tilde{\beta}\|_1$ is small -Because ℓ_1 minimizer is not unique
- Instead:
- $\|X\beta^* X\beta\|_1.$
- subspace embedding property for Lewis weight sampling.

Results

- Upper bound: Need $O(\frac{d \log(d/\epsilon \delta)}{\epsilon^2})$ rows!
- Lower bound: No algorithm can do fewer than $\Omega(\frac{d}{\epsilon^2} + \frac{\log(1/\delta)}{\epsilon^2} + d\log\frac{1}{\delta})$

References

$$2^{2l+1} \mathbb{E}_{S,\sigma} \left[\left(\max_{\|X(\beta^*-\beta)\|_1=1} \left| \sum_k \sigma_{i_k} \frac{x_{i_k}^\top}{p_{i_k}} (\beta^*-\beta) \right| \right)^l \right] \le \varepsilon^l \sigma_{i_k} \frac{x_{i_k}^\top}{p_{i_k}} \left(\beta^* - \beta \right) \right]$$

 $(\|SX\beta^* - Sy\|_1 - \|SX\beta - Sy\|_1) - (\|X\beta^* - y\|_1 - \|X\beta - y\|_1) \le \varepsilon \cdot \|X\beta^* - X\beta\|_1$ • So in figure 3, we would be showing that the two blue distances are close compared to

• The effects of the difficult y cancel in each term, and now we can show this using the

[1] Michael B. Cohen and Richard Peng. Lp row sampling by lewis weights. In *Proceedings* of the Forty-Seventh Annual ACM Symposium on Theory of Computing, STOC '15, page 183–192, New York, NY, USA, 2015. Association for Computing Machinery.

 $\left\| \frac{x_{i_k}}{p_{i_k}} (\beta^* - \beta) \right\|$