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Abstract Subspace Embeddings and Regression Proof Approach

We consider the problem of finding an approximate solution to £; regression

. . . C Lewi ight sub ling to get sub bedding: < _ Bl ;
while only observing a small number of labels. Given an n x d unlabeled data * Al tEe LEWIS WEISTh SUDSAMPHNS 10 561 SULSpAct CHbECTing e Cannot show |5 — B]|1 is small
matrix X, we must choose a small set of m < n rows to observe the labels (1= X[ < [[SXBlh < (1+ )| X5 — Because £; minimizer 1s not unique
of, then output an estimate 3 whose error on the original problem is within a for all 3. e Instead:
1+.5 factor of optlmal. We show thgt Sampl%ng. from X accordl.ng to its Leyms _Need m = O (dlog(czi/sé)) sampled rows [1] (1SX 8" — Syll, — ISX 5 — Syl) — (1XB8* =yl — | X8 —yll) <e-|XB* — X8|,
weights and outputting the empirical minimizer succeeds with probability -
1—§ form > O(:dlog % ). This is analogous to the performance of sampling e Show that we can use this to sample well for regression as well! (without even seeing ). ¢ 50 in figure 3, we would be showing that the two blue distances are close compared to
E E * A
according to leverage scores for /5 regression, but with exponentially better | X5 — X5
dependence on 9. We also give a corresponding lower bound of Q(g% + (d + | e The effects of the difficult y cancel in each term, and now we can show this using the
é) log %) subspace embedding property for Lewis weight sampling.

Results

Active LAD Regression

There is a full training set {X;}1<i<n, but no observed {y;}i<i<n. Pick
index set [ of size m to query, so you see {y;}ic;r with m < n. Return (3
such that with high probability

IXB =yl < 1+ X8 =yl
where 3° =sep | X8 =yl

e Upper bound: Need O(dlogig/ ) rows!

e Lower bound: No algorithm can do fewer than §(
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Fig. 3: Representation of the problem: on the left, R", with green ¢; balls projecting y onto the red column space of X. On the

right, the same but for the sampled space in R™

Proof Sketch

Strategy

Three main steps:

e Symmetrize:
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E L where i; are the rows sampled by S, and o} are independent Rademacher random variables (+1 w.p. 1/2).
% wseen e Contraction Lemma: effectively a triangle inequality that removes the effect of y
e Pick a distribution over [n| and sample m < n elements, sample and - . . I - . I
re-weight according to that distribution to preserve expectations. ol ax Z - @, Yil 7,8 — il < 9+l g e Z o, Jik(g* — B)
e Sampling represented by “sampling-and-reweighting” matrix S, so So | \IIXF=X0=1) 7 Piy Pi So | \IFF =A== Pi
¢ Dampled gy e Subspace embedding argument: we are in the column space of SX now, so we can modify and apply subspace embedding results
o return ||SX 5 — Sy||r. I T ]
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