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Abstract

We consider the problem of finding an approximate solution to `1 regression
while only observing a small number of labels. Given an n×d unlabeled data
matrix X , we must choose a small set of m� n rows to observe the labels
of, then output an estimate β̂ whose error on the original problem is within a
1+ε factor of optimal. We show that sampling from X according to its Lewis
weights and outputting the empirical minimizer succeeds with probability
1−δ for m > O( 1

ε2d log d
εδ). This is analogous to the performance of sampling

according to leverage scores for `2 regression, but with exponentially better
dependence on δ. We also give a corresponding lower bound of Ω( dε2 + (d +
1
ε2) log 1

δ).

Active LAD Regression

There is a full training set {Xi}1≤i≤n, but no observed {yi}1≤i≤n. Pick
index set I of size m to query, so you see {yi}i∈I with m � n. Return β̃
such that with high probability

‖Xβ̃ − y‖1 ≤ (1 + ε)‖Xβ∗ − y‖1

where β∗ =β∈Rd ‖Xβ − y‖1.

Strategy

• Pick a distribution over [n] and sample m � n elements, sample and
re-weight according to that distribution to preserve expectations.

• Sampling represented by “sampling-and-reweighting” matrix S, so

X
Sampled−−−−→ SX

• return ‖SXβ − Sy‖1.

Subspace Embeddings and Regression

• Can use Lewis weight subsampling to get subspace embedding:

(1− ε)‖Xβ‖1 ≤ ‖SXβ‖1 ≤ (1 + ε)‖Xβ‖1

for all β.

–Need m = O
(
d log(d/εδ)

ε2

)
sampled rows [1]

• Show that we can use this to sample well for regression as well! (without even seeing y).

Fig. 3: Representation of the problem: on the left, Rn, with green `1 balls projecting y onto the red column space of X . On the

right, the same but for the sampled space in Rm

Proof Approach

• Cannot show ‖β∗ − β̃‖1 is small

–Because `1 minimizer is not unique

• Instead:

(‖SXβ∗ − Sy‖1 − ‖SXβ − Sy‖1)− (‖Xβ∗ − y‖1 − ‖Xβ − y‖1) ≤ ε · ‖Xβ∗ −Xβ‖1

• So in figure 3, we would be showing that the two blue distances are close compared to
‖Xβ∗ −Xβ̃‖1.

• The effects of the difficult y cancel in each term, and now we can show this using the
subspace embedding property for Lewis weight sampling.

Results

•Upper bound: Need O(d log(d/εδ)
ε2 ) rows!

•Lower bound: No algorithm can do fewer than Ω( dε2 + log(1/δ)
ε2 + d log 1

δ)
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Proof Sketch

Three main steps:

• Symmetrize:

E
S

[(
max

‖Xβ∗−Xβ‖=1
|(‖SXβ∗ − Sy‖1 − ‖SXβ − Sy‖1)− (‖Xβ∗ − y‖1 − ‖Xβ − y‖1)|

)l]
≤ 2l E
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where ik are the rows sampled by S, and σk are independent Rademacher random variables (±1 w.p. 1/2).

•Contraction Lemma: effectively a triangle inequality that removes the effect of y
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• Subspace embedding argument: we are in the column space of SX now, so we can modify and apply subspace embedding results
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