Near-Optimal Two-Pass Streaming Algorithm

for Sampling Random Walks over Directed Graphs

Lijie Chen, Gillat Kol, Dmitry Paramonov, Raghuvansh R. Saxena, Zhao Song, Huacheng Yu

Random Walks on Directed Graphs

n vertices, L steps

Graph Streaming Algorithms [HRR98, FKM™(9]

Low memory algorithm can only make few passes over the graph.

Prior Work

Known algorithms either use a lot of memory, or a lot of passes.

Reference # Passes # Memory Remarks

Easy L O(logn)

[SGP11] OKL) O(n)

Easy 1 O(nL) ight [Jin19]
Our work 2 ©(nv'L)

Table 1: L-step random walk on n-vertex graphs.

b )

L

Our Result

Theorem

Two pass algorithms need ©(n - v/L) space to find a random walk.

Why it is cool?

e \Works In the turnstile model.
e |s starting vertex oblivious (svo).
e [ight for any svo algorithm with any number of passes.

e Q(n - L/P)-lower bound for p-pass non-svo algorithms.

The 1-pass O(nL)-space algorithm

\ '

O: Sample L edges from each vertex! (with replacement)

4

- S

Our 2-pass O(n - v/ L)-space algorithm

- - One pass algorithm tells which vertices have
return time < k in O(nk) space.

First pass
Call a vertex heavy If it has return time < k, and light otherwise.

Second pass
Store all edges from heavy vertices, and L/k edges from each light
vertex.

How many edges to remember?

Light vertices: Only need to store L/k edges per vertex, at most %
overall.

Lemma (Heavy vertices)
The total edges coming out of heavy vertices is O (nk).

Proof.
For all v, there are at most O(k) heavy u that have an edge to v.

e For heavy u, random walk from u will return in < k steps.
e For heavy u with an edge to v, walk from v visits u In < k steps.

e At most k vertices visited In k steps.

The 1-pass O(nL)-space algorithm

The Hard Instance

VI SRS\
N N/ D]

e [-length walk equivalent to an entire component.

e svo-algorithms do not know which component.




