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Motivation

SGD is the method of choice for training large scale and over-parameterized machine
learning models:

▶ Small batch size.

▶ Multiple passes over the dataset.

Why does multi-pass, small batch-size SGD work so well in practice?

Preliminaries
Stochastic optimization:
▶ Model parameters w ∈ Rd, data instance z ∈ Z.

▶ Given samples S = {z1, . . . , zn} drawn i.i.d. from some unknown distribution D, find the
point

ŵ ∈ arg min
w

F (w),

where the objective F (w) := E[f(w; z)].

Stochastic Convex Optimization (SCO): Simplest stochastic optimization problem.

Assumptions:

1. Population loss F is convex and L-Lipschitz.

2. Initial point distance to optimality: ∥w1 − w⋆∥ ≤ B where w⋆ ∈ arg minw F (w).

3. Bounded gradient variance: supw Ez∼D ∥∇f(w, z)−∇F (w)∥2 ≤ σ2.

Algorithms:

Stochastic Gradient Descent (SGD): For i = 1 to n:

wSGD
i+1 ← wSGD

i − η∇f(wSGD
i ; zi).

Return ŵSGD := 1
n

∑n
i=1 wSGD

i .

SGD upper bound for SCO (Nemirovski and Yudin 1983)

On any SCO problem, running SGD algorithm for n steps with step size η = 1/
√

n has
the rate

ES[F (ŵSGD
n )]− inf

w∈Rd
F (w) ≤ O

( 1√
n

)
.

Regularized Empirical Risk Minimmization (RERM): Given a regularization function
R(w) and the empirical loss F̂n(w) := 1

n

∑n
i=1 f(w; zi), return

wRERM = arg min
w∈W

F̂n(w) + R(w).

Main Contributions
1. For any regularizer, we provide a SCO problem for which RERM fails to learn.

On the other hand, SGD learns at rate of O
(

1√
n

)
.

2. Statistical separation between SGD (small batch size) and learning via Gra-
dient Descent (GD) on empirical loss (large batch size).

3. Provide a multi-epoch variant of SGD commonly used in practice.

(a) This algorithm is at least as good as single pass SGD.
(b) But, can be much better for certain SCO problems.

SGD, RERM and implicit regularization
SGD and implicit regularization: Is SGD biased towards good solutions??

Conjecture: There exists a regularization function R(w) such that:

ŵSGD ≈ wRERM := arg min
w∈W

F̂n(w) + R(w).

Many positive results: Gunasekar et al. (2018), Soudry et al. (2018), Ji and Telgarsky (2018), Arora et al. (2019) . . .

Our result: RERM fails to learn for SCO
For any regularizer R, there exists a SCO problem for which

ES[F (wRERM)]− inf
w∈Rd

F (w) ≥ Ω(1),

where wRERM is RERM solution with regularization R(w).

SGD has no implicit regularization for SCO - the simplest stochastic
optimization setting!

Loss function: For x ∈ {0, 1}d, y ∈ {−1, 1} and α ∈ {e1, . . . , ed},

f(w; z = (x, α, y)) = y∥(w − α)⊙ x∥.

Data Distribution: x ∼ Uniform({0, 1}d), y = +1 w.p. 3/4 and y = −1 w.p. 1/4 , α = e1.

Key Idea: F (w) is convex, but F̂n(w) is not convex.

1. There exists a coordinate ĵ ∈ [d] such that x[ĵ] = 0 for all samples where y = +1.

2. Along the coordinate ĵ the empirical loss looks like:

F̂n(teĵ) ≈ −
1
3
|t| (non-convex function)

3. Empirical loss decreases as we increase t

⇒ ERM diverges to infinity.
⇒ RERM fails for any regularizer R(w).
⇒ Gradient descent algorithm eventually fails (diverges along the direction ĵ)

Gradient Descent (Large-batch) vs SGD (Small-batch)

SGD with large batch size / GD:
For t = 1 to T :

wGD
t+1 ← wGD

t − η∇F̂n(wGD
t ).

Return ŵGD
T := 1

T

∑T
i=1 wGD

t .

Sample complexity lower bound for GD algorithm

There exists a SCO problem such that for any choice of step size and iterations,

ES[F (ŵGD
T )]− inf

w∈Rd
F (w) ≥ Ω

( 1
n5/12

)
.

On the other hand, SGD with step size O( 1√
n
) has a rate of 1/

√
n.

Proof based on novel modifications of the iteration complexity lower bound construction in Amir. et. al. 2021 to
rule out GD small step size.

Single pass SGD vs Multiple pass SGD

Our multi-pass SGD algorithm: Run k passes of SGD + cross validation

Multiple passes can help!

Let R(·) be any regularization function, there exists a SCO problem for which:

(a) (One pass SGD lower bound) For any step size η, SGD has lower bound

ES[F (ŵSGD
n )]− inf

w∈Rd
F (w) ≥ Ω

( 1√
n

)
.

Furthermore, SGD with η = 1/
√

n attains this bound.

(b) (Benefit of multiple-pass SGD) Multi-pass SGD algorithm with k satisfies:

ES[F (ŵMP)]− inf
w∈Rd

F (w) ≤ O
( 1√

nk

)
.

(c) (Failure of RERM) RERM algorithm has lower bound of Ω(1).

Connections to deep learning
Consider a two layer diagonal neural network:

h(w; x) = ReLU(w⊤2 ReLU(w1 ⊙ x)),

and absolute loss function f(w; z) = |y−h(w; z)| (also holds for linear loss / hinge loss). There
exists a data distribution over (x, y) such that:

▶ SGD succeeds in finding an approximate global minima.

▶ There exists a bad ERM solution.


