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Our approaches: simpler and faster list-decodable mean estimation

List-decodable mean estimation: the problem
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containing at least one “good” mean estimate

Lower bound: list size 𝑂(𝑘), 𝑂(𝑑𝑘) samples, 
and estimation error 𝑂(𝛼#$.&) necessary

Previous approaches Application: mixture models

Joint work with:
Ilias Diakonikolas, Daniel Kongsgaard, Daniel Kane, Jerry Li

Flexible, robust statistical model!
• Robust analog of learning mixture models
• Apps: crowd-sourcing, community detection
• Semi-verified learning: “a data prism”

“Large 𝛼
regime”

“Small 𝛼
regime”

*Bounded second 
moments only.

Stronger assumptions 
à improved rates.

“Filtering”: [DKKLMS17, Ste18]
Intuition: substantial mean deviation 

induces covariance deviation!

“Spectral signatures scoring”: remove at 
least one outlier in nearly-linear time.

“Simple” algorithm:
𝑂(𝑛𝑑!) time

“Fast filtering”: [DHL19]

Goal:  bound covariance operator 
norm. à Regret against spectrahedron.

“Quantum entropy 
scoring”: remove against 

multiple directions at once.

“Fast” algorithm:
𝑂(𝑛𝑑) time

A murkier landscape…

Question 2: is O(ndk) (PCA 
time) really necessary in the 
runtime, even non-robustly?

Question 1: can we design 
simpler algorithms “decoupling” 

filtering and clustering?

List-decoding guarantees imply 
returning estimates of all cluster means.

Clustering algorithm sketch:
1. Map every datapoint to 

closest hypothesis.
2. Define equivalence relation 

by mapping distances.
3. Prune unused hypotheses.

Extends cleanly to contaminated mixtures, 
heavier tails! ”More efficient” equivalence 

relations also degree of freedom.

Our results: clustering mixture models

Assumption Separation Runtime

sub-Gaussian

bounded 4th
moments

bounded 2nd
moments

First runtime improvement to clustering GMMs since 
[VW02]. Matches state-of-the-art GMM separation under a 

covariance bound by [AM05] + robustness, heavy tails.

Goal: label 1-o(1) points correctly from a mixture model, 
assuming components “nice” and “well-separated” 

Open question: [VW02] used stronger concentration 
properties to obtain better separation for spherical GMMs. Can 

we do better for clustering sub-Gaussian mixture models?

I. Robustly matching the “PCA barrier”: [DKKLT20] II. Robustly breaking the “PCA barrier”: [DKKLT21]

Decoupling from 
subspace identification.

SIFT: A new filtering 
algorithm for subspace 

identification.

Fast filtering via Ky Fan SDP 
regret minimization.

Intuition: in mixture model case, 
k-PCA captures span of means

Suffices to learn mean 
in k dimensions à

naïve sampling!

A new approach: “decoupling” 
clustering and filtering

Identifiability proof: 
small covariance à
small mean error.

Potential function: O(k)-th
largest eigenvalue. Identifiability 
proof + naïve sampling gets us 

the rest of the way!

Birds’ eye view:

Line 5: termination condition (bounded O(k)-th eigenvalue) 

Line 6: “whitened” scores to prevent symmetry-breaking

Lines 7-8: standard “soft filtering” procedure

Line 12: random sampling within learned subspace

Under the hood: saturation, weaker “relative” 
criterion for list-decodable filtering.

Practical direction: 
robust PCA?

Idea: regret minimization against k-Fantope

New technical tool: fine-grained Ky Fan MMW 
analysis

Filter against covariance matrices to halve Ky Fan norm?

Relative notions 
of saturationPitfalls from 

[DHL19]!!!

Whitening breaks 
monotonicity

Fast, robust 
filtering for MMW

☠ ☠ ☠

“Gospel of DJ Khaled”

Every log iterations, either:
1. Halve the weight.
2. Peel off k dimensions.
3. Decrease Ky Fan norm.

Main result:
Optimal error + list size in 𝑂 𝑛𝑑𝑘 + 𝑘! .
Proof: bounded Ky Fan + run SIFT on the 

low-dimensional learned subspace!

A new, “one-shot” MMW 
potential alternative.

Rethinking the 
[DKK20] multifilter.

Putting it all 
together.

Previous MMW framework One-shot potential decrease JL as a certificate

requires “burn-in” 
to make progressrequires monotonicity

MMW-based scoring

scoring against old potential

Goal: decrease scores “against”

JL: suffices to decrease univariate 
scores along log random directions.

Old multifilter tree

“Type 1” “Type II”

bounded-variance 
majority

large 
variance

Spectral outlier filtering

New goal:
Partition into 

bounded-variance
subsets (clustering).

New multifilter tree (one layer)

bounded-variance 
majority

large 
variance

Threshold checks

“Cluster” “Split”

Randomized dropout Bucketed threshold 
checks

Random 1-d 
clustering

Random 1-d 
clustering

Fast one-dimensional partitioning 
in random direction

Bounded covariance clusters

Recursive ”split or cluster”

Given set, cases based on “majority” variance.
1. Large: identify a “split” (recurse)
II. Small: rapid dropout to fix variance (exit)

Invariants:
• Saturation
• Bounded set sizes
• Bounded-covariance clusters


