

Our approaches: simpler and faster list-decodable mean estimation

	I. Robustly matching the		
Decoupling from subspace identification.	7 6 5 4 3 2 1 0 35 30 2 1 1 0 35 30 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	uition: in mixture r PCA captures spar	model case, n of means
SIFT: A new filtering algorithm for subspace identification.	e	Algorithm 1 SIFT (T, δ) 1: Input: $T \subset \mathbb{R}^d$ with 2: $w^{(0)} \leftarrow \frac{1}{n} \mathbb{1}_T, t \leftarrow 0, \beta$ 3: $\mathbf{V} \leftarrow Power(\operatorname{Cov}_{w^{(t)}}(T)\mathbf{V})$ 4: $\mathbf{\Sigma} \leftarrow \mathbf{V}^\top \operatorname{Cov}_{w^{(t)}}(T)\mathbf{V}$ 5: while $\lambda_k(\mathbf{\Sigma}) \ge \frac{4}{\sqrt{\beta}}$ do6: $\tau_i^{(t)} \leftarrow \left\ \mathbf{\Sigma}^{-\frac{1}{2}} \mathbf{V}^\top (X) \right\ $ 7: $w_i^{(t+1)} \leftarrow \left(1 - \frac{\tau_i^{(t)}}{\tau_{\max}^{(t)}} \right)$ 8: $t \leftarrow t+1, \beta \leftarrow \left\ w^{(t)} \right\ $ 9: $\mathbf{V} \leftarrow Power(\operatorname{Cov}_{w^{(t)}}(T))$ 10: $\mathbf{\Sigma} \leftarrow \mathbf{V}^\top \operatorname{Cov}_{w^{(t)}}(T)$ 11: end while12: return $L := \{ \mathbf{V} \mathbf{V}^\top X \}$ with list size $ L = \lceil \frac{2}{\alpha} \rfloor$	$egin{aligned} T &= n ext{ satisfying Assumption} \ &\leftarrow 1, \ k \leftarrow \lceil rac{4}{lpha} ceil \ &\leftarrow 1, \ k \leftarrow \lceil rac{4}{lpha} ceil \ &\downarrow \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $
Fast filtering via Ky Fan SDP regret minimization.		Idea: regret minimization agains $\{\mathbf{Y} \mid \mathbf{Y} \succeq 0, \ \mathbf{Y}\ _{\text{op}} \leq 1, T\}$ New technical tool: fine-grained I $\left\ \frac{1}{T}\sum_{t=0}^{T-1} \mathbf{G}_t\right\ _k \leq \frac{2}{T}\sum_{t=0}^{T-1} \langle \mathbf{G}_t, \mathbf{Y}_t$ Filter against covariance matrices to h	
	Pitfalls from [DHL19]!!!	Relative notions of saturation	Whitening breaks monotonicity

Recent Advances in List-Decodable Mean Estimation

Presenter: Kevin Tian Stanford University

Ilias Diakonikolas, Daniel Kongsgaard, Daniel Kane, Jerry Li

- Input: Dataset $\{X_i\}$ of size *n*: α fraction i.i.d. from bounded covariance D, others arbitrary
- Output: hypothesis list L of size $O(k) \coloneqq O(\frac{1}{\alpha})$ containing at least one "good" mean estimate
- Lower bound: list size O(k), O(dk) samples, and estimation error $O(\alpha^{-0.5})$ necessary

Robust analog of learning mixture models Apps: crowd-sourcing, community detection Semi-verified learning: "a data prism"

"PCA barrier"	' <mark>: [DKKLT</mark> 20]			
A new approach: "decoupling" clustering and filtering		Potential function: <i>O(k)</i> -th largest eigenvalue. Identifiability			
Suffices to learn mean in k dimensions → naïve sampling!	Identifiability proof: small covariance → small mean error.	the rest	of the way!		
n 1, $\delta \in (0, 1)$	- Birds' eye view: Line 5: termination condition (bounded <i>O(k</i>)-th eigenvalue)				
$\hat{r}_{\mathrm{ax}}^{(i)} := \max_{i \in T \mid w^{(t)}_{i} \neq 0} au_{i}^{(t)}$	Line 6: "whitened" scores to prevent symmetry-breaking Lines 7-8: standard "soft filtering" procedure				
ere $i \in T$ is sampled uniformly at random}	Line 12: random sampling within learned subspace Under the hood: saturation, weaker "relative" , criterion for list-decodable filtering.				
t k-Fantope $\operatorname{Yr}(\mathbf{V}) < k$	"Gospel of DJ Khaled"				
$Ky Fan MMW$ $h = \frac{k \log d}{k}$		All I do is WIN, WIN, W what — DJ Khaled	/IN no matter —		
nalve Ky Fan norm?	4 [1]	AZQUOTES			
Fast, robust E filtering for MMV I 2 3	very log iterations, either: . Halve the weight. . Peel off <i>k</i> dimensions. . Decrease Ky Fan norm.	Mair Optimal error + lis Proof: bounded Ky low-dimensiona	result: t size in $O(ndk + k^6)$. Fan + run SIFT on the I learned subspace!		

Joint work with:

Application: mixture models

Our results: clustering mixture models					
Goal: label 1-o(1) points correctly from a <i>mixture model</i> , assuming components "nice" and "well-separated"					
$\mathcal{M} = (1 - \epsilon) \sum_{i \in [i]}$	$\sum_{k]} \alpha_i \mathcal{D}_i + \epsilon \mathcal{D}_{adv}$ $\alpha_i \geq 0$	$\geq \alpha \; \forall i \in [k]$ $\epsilon = O(\alpha)$			
Assumption	Separation	Runtime			
sub-Gaussian	$\widetilde{\Omega}\left(\alpha^{-\frac{1}{2}}\right)$	$n^{1+o(1)}d$			
bounded 4 th moments	$\widetilde{\Omega}\left(\alpha^{-\frac{1}{2}}\right)$	$n^{1+o(1)}d$			
bounded 2 nd moments	$\widetilde{\Omega}\left(\alpha^{-\frac{5}{6}}\right)$	$n^{1+o(1)}d$			

First runtime improvement to clustering GMMs since [VW02]. Matches state-of-the-art GMM separation under a covariance bound by [AM05] + robustness, heavy tails.

Open question: [VW02] used stronger concentration properties to obtain better separation for spherical GMMs. Can we do better for clustering sub-Gaussian mixture models?