What are CSPs?

- **Constraint Satisfaction Problems (CSPs)** are an important class of optimization problems.
- Every CSP is characterized by a finite family \(\mathcal{F} \) of constraint functions.
- An instance of CSP(\(\mathcal{F} \)) consists of a finite set of variables, and constraints from \(\mathcal{F} \) applied on the variables.
- **Value** of a CSP instance: Maximum fraction of constraints that can be satisfied by any assignment to the variables.
- Examples include Max-CUT, Max-DICUT, Unique Games, Max-k-SAT, Max-q-Coloring.

CSPs in streaming settings

- **Insertion-only setting**: Constraints appear one-by-one in a stream.
 - Algorithm for CSP: Using only polylog storage space, compute the value of the CSP instance.

- **Dynamic setting**: Constraints are either added or deleted one-by-one in a stream.

- **NP-Hard for most CSPs!**

- **Approximation**-algorithm for CSP: Using only polylog storage space, compute the value of the CSP instance approximately.

Objectives

To study the fine-grained approximability of every CSP in streaming settings, *i.e.*, answer the following problem for all \(1 > \gamma > \beta > 0 \):

\((\gamma, \beta)-distinguishability problem for CSP(\mathcal{F})\)

Does there exist a polylog space streaming algorithm that can distinguish every instance of CSP(\(\mathcal{F} \)) with value **at least** \(\gamma \) from every instance of CSP(\(\mathcal{F} \)) with value **at most** \(\beta \), with probability at least 0.9?

Results

- **Dichotomy theorem in the dynamic setting**: For every pair \(1 > \gamma > \beta > 0 \), we define two closed, convex, and bounded sets \(K^\gamma_\mathcal{F} \) and \(K^\beta_\mathcal{F} \) and prove that
 - **If the sets do not intersect**, yes, there exists such a dynamic algorithm!
 - **If the sets intersect**, no, there is no such dynamic algorithm!

- **Approximation resistance in the Insertion-only setting**: If \(\mathcal{F} \) “weakly supports one-wise independence,” then there is no “non-trivial” insertion-only streaming approximation algorithm for CSP(\(\mathcal{F} \)). Examples include Max-CUT, Unique Games, Max-q-Coloring.

Proof techniques

- Dynamic streaming algorithm when \(K^\gamma_\mathcal{F} \) and \(K^\beta_\mathcal{F} \) do not intersect:
 - Consider the normal of the separating hyperplane: \(\lambda = (\lambda_1, \lambda_2, \ldots, \lambda_k) \).
 - Compute the \(\ell_1, \infty \)-norm of a “\(\lambda \)-bias matrix” of the instance in the dynamic setting.
 - The value of this norm distinguishes instances with value **at least** \(\gamma \) from instances with value **at most** \(\beta \).

- **\(\Omega(\sqrt{n}) \) space lower bound when \(K^\gamma_\mathcal{F} \) and \(K^\beta_\mathcal{F} \) intersect**:
 - Follows from the hardness of a one-way communication game.

Future Directions

- A dichotomy theorem for every CSP in the insertion-only streaming setting.
- A dichotomy theorem for every CSP in the insertion-only streaming setting where the constraints are randomly ordered.

Based on Approximability of all finite CSPs in the dynamic streaming setting, Chi-Ning Chou, Alexander Golovnev, Madhu Sudan, and Santhoshini Velusamy. To appear in FOCS 2021.