

How well can we approximate CSPs in streaming settings? Chi-Ning Chou*, Alexander Golovnev+, Madhu Sudan*, Santhoshini Velusamy*

What are CSPs?

- Constraint Satisfaction Problems (CSPs) are an important class of **optimization** problems.
- \succ Every CSP is characterized by a finite family (F) of constraint functions.
- \succ An instance of CSP(F) consists of a finite set of variables, and constraints from F applied on the variables.
- > Value of a CSP instance: Maximum fraction of constraints that can be satisfied by any assignment to the variables.
- > Examples include Max-CUT, Max-DICUT, Unique Games, Max-k-SAT, Max-q-Coloring.

CSPs in streaming settings

Insertion-only setting: Constraints appear oneby-one in a stream.

Dynamic setting: Constraints are either added or deleted one-by-one in a stream.

- □ Algorithm for CSP: Using only *polylog* storage space, compute the value of the CSP instance.
- □ NP-Hard for most CSPs!
- **Approximation**-algorithm for CSP: Using only polylog storage space, compute the value of the CSP instance **approximately**.

*Harvard University, +Georgetown University

Objectives

To study the fine-grained approximability of every CSP in streaming settings, *i.e.*, answer the following problem for all $1 > \gamma > \beta > 0$:

 (γ, β) -distinguishability problem for CSP(F) Does there exist a *polylog* space streaming algorithm that can distinguish every instance of CSP(F) with value at least γ from every instance of CSP(F) with value at most β , with probability at least 0.9?

Results

- ✓ **Dichotomy theorem in the dynamic setting:** For every pair $1 > \gamma > \beta > 0$, we define two closed, convex, and bounded sets $K_{\gamma}^{Y}(F)$ and $K_{\beta}^{N}(F)$ and prove that
- If the sets do not intersect, yes, there exists such a dynamic algorithm!

 K_{β}^{NO}

• If the sets intersect, no, there is no such dynamic algorithm!

✓ Approximation resistance in the Insertion-only setting: If F "weakly supports one-wise independence," then there is no "non-trivial" insertion-only streaming approximation algorithm for CSP(F). Examples include Max-CUT, Unique Games, Max-q-Coloring.

do not intersect:

- $(\lambda_1, \lambda_2, \ldots, \lambda_k).$
- instance in the dynamic setting.
- intersect:
- Follows from the hardness communication game.

Future Directions

- only streaming setting.
- randomly ordered.

Based on Approximability of all finite CSPs in the dynamic streaming setting, Chi-Ning Chou, Alexander Golovnev, Madhu Sudan, and Santhoshini Velusamy. To appear in FOCS 2021.

Proof techniques

• Dynamic streaming algorithm when $K_{\gamma}^{Y}(F)$ and $K_{\beta}^{N}(F)$

 \succ Consider the normal of the separating hyperplane: $\lambda = 1$

 \succ Compute the $\ell_{1,\infty}$ -norm of a " λ -bias matrix" of the

> The value of this norm distinguishes instances with value at least γ from instances with value at most β .

$\Omega(\sqrt{n})$ space lower bound when $K^{Y}_{\gamma}(F)$ and $K^{N}_{\beta}(F)$

of one-way а

• A dichotomy theorem for every CSP in the insertion-

• A dichotomy theorem for every CSP in the insertiononly streaming setting where the constraints are