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Low Rank Approximation

e Classic formulation: Given matrix A, find a rank-k matrix L that minimizes

|A = LlE =22, (A — Lij)*.

Can be solved efficiently (e.g., SVD).

e Natural variants are NP hard: e.g., different tmportance for different entries.

e Weighted LRA: Given matrix A and weight matrix W of the same size, find a
rank-k matrix L that minimizes Cost(L) = » ;- W;; - (Aj; — Li;)*.

e Can also consider ¢, error, ZZ j Wii(Aij — Lij)P.
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Prior Work

e Alternating minimization heuristic [1] — no guarantees

e Multiplicative error bounds — assumes low rank W and time complexity exponential
in rank of W. [2, 3]

e Additive error bounds — simple algorithm, but requires extra ‘low communication

complexity’ assumption on W.

Our goal: design and analyze efficient, practical algorithms for
weighted and ¢, error low rank approximation

Results

Informal. There exist greedy iterative algorithms that achieve additive error guaran-
tees, under mild assumption on target matrix L (informally, the opt solution).

Formally, suppose the target L satisfies (for some parameter A)

| L[

< A.
Al

(target not too different from A in Frobenius norm)

Theorem. (Weighted LRA) For any € > 0, there is a greedy algorithm that outputs
L' of rank O(kA/e?), satisfying Cost(L') < Cost(L) + €|| A%

Extensions to Zp norm error.

e Analogous result holds under an ¢, error objective, with a different greedy step.

e [mplies an unconditional algorithm for unweighted ¢, LRA, for p > 2.
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Algorithm outline

Idea: Build approximation of columns a; using a set of ‘basis vectors’” Z

Initialize Z = ), x§0) = ( (approximation for column a;) for all j;
fort=1,2,...,k' do
(I) Solve an optimization problem to find z that captures sufficient mass

from the “residual” (a; — xgt));

(IT) Add z to Z and update approximations of columns x i

(t)

end
Return Z and L' = [xgkl), ey X

Analysis

Let X® be the matrix approximating A at step t (columns x§t>), and L be the target
low rank approximation.

Basic idea. As long as Cost(X ")) < Cost(L), there exists a vector z that reduces the
cost “significantly”. (Reminiscent of Set Cover.)

e “Per column” analysis. For column j, define f; : R" — R as
filv) = Z w;(a, — v)".
reld|

e [{ey Lemma: Suppose y is the current approximation for column a; and suppose the
“ideal” approximation is z = > . au;. If f;(2) < f;(y), there exists index ¢ such
that adding u; to y reduces f; by Qo ((f5(y) — fi(2))?).

e (One column — matrix) If Cost(L) ;= I" and Cost(X ") is /\;, there exists z in the
algorithm such that

(A —T)°
AN

e Optimization problem: required z can be obtained by solving:

max Z(ij(a;gt)),u)z subject to ||lul| < 1.
J

A1 < Ay —

(Implies desired convergence rate)

e Reduces to finding top singular vector of appropriate matrix!

Extension to ¢, error

When p > 2, same high-level framework applies, but:

e Requires more involved analysis to prove “progress” (uses recent works on ¢,
regression to show smoothness of f;).

e Optimization problem is now instance of matrix 2 — p norm computation — can be
solved via convex relaxations when p > 2.
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Experiments

The following schemes were used to derive the weight matrices for the plots.

o IW1: Each element is sampled from the interval |0, 1] uniformly at random.

e V3. Generate a random binary matrix with each entry 1 with probability 0.1 and
then set the first 100 columns of first 150 rows to 1.

Error Against the Rank
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Figure: Comparison of cost of the approximation against the rank of the matrix.

Error Against the Signal-to-noise Ratio
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Figure: Comparison of cost of the approximation against the signal to noise ratio of the matrix.

Conclusions

e We study greedy pursuit algorithms for weighted low rank approximation, and show
that they yield good bi-criteria approximations with a small additive error. Holds
for ¢, error, for p > 2, under a realistic assumption on target low rank matrix.

e Proposed algorithm is easy to implement and works well in practice.
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