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Low Rank Approximation

•Classic formulation: Given matrix A, find a rank-k matrix L that minimizes
‖A− L‖2

F =
∑

i,j(Aij − Lij)2. Can be solved efficiently (e.g., SVD).
• Natural variants are NP hard: e.g., different importance for different entries.
•Weighted LRA: Given matrix A and weight matrix W of the same size, find a
rank-k matrix L that minimizes Cost(L) =

∑
i,jWij · (Aij − Lij)2.

• Can also consider `p error,
∑

i,jWij(Aij − Lij)p.

Motivation
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Prior Work

• Alternating minimization heuristic [1] – no guarantees
•Multiplicative error bounds – assumes low rank W and time complexity exponential
in rank of W . [2, 3]
• Additive error bounds – simple algorithm, but requires extra ‘low communication
complexity’ assumption on W .

Our goal: design and analyze efficient, practical algorithms for
weighted and `p error low rank approximation

Results

Informal. There exist greedy iterative algorithms that achieve additive error guaran-
tees, under mild assumption on target matrix L (informally, the opt solution).
Formally, suppose the target L satisfies (for some parameter Λ)

‖L‖2
F

‖A‖2
F

≤ Λ. (target not too different from A in Frobenius norm)

Theorem. (Weighted LRA) For any ε > 0, there is a greedy algorithm that outputs
L′ of rank O(kΛ/ε2), satisfying Cost(L′) ≤ Cost(L) + ε‖A‖2

F .
Extensions to `p norm error.
• Analogous result holds under an `p error objective, with a different greedy step.
• Implies an unconditional algorithm for unweighted `p LRA, for p ≥ 2.

Algorithm outline

Idea: Build approximation of columns aj using a set of ‘basis vectors’ Z
Initialize Z = ∅, x(0)

j = 0 (approximation for column aj) for all j;
for t = 1, 2, . . . , k′ do
(I) Solve an optimization problem to find z that captures sufficient mass
from the “residual” (aj − x(t)

j );
(II) Add z to Z and update approximations of columns x(t)

j ;
end
Return Z and L′ = [x(k′)

1 , . . . , x
(k′)
n ];

Analysis

Let X (t) be the matrix approximating A at step t (columns x(t)
j ), and L be the target

low rank approximation.
Basic idea. As long as Cost(X (t)) < Cost(L), there exists a vector z that reduces the
cost “significantly”. (Reminiscent of Set Cover.)
• “Per column” analysis. For column j, define fj : Rn 7→ R as

fj(v) =
∑
r∈[d]

wj,r(aj,r − vr)2.

• Key Lemma: Suppose y is the current approximation for column aj and suppose the
“ideal” approximation is z =

∑
i αiui. If fj(z) < fj(y), there exists index i such

that adding ui to y reduces fj by Ωα ((fj(y)− fj(z))2).
• (One column → matrix) If Cost(L) := Γ and Cost(X (t)) is ∆t, there exists z in the
algorithm such that

∆t+1 ≤ ∆t −
(∆t − Γ)2

4Λ
. (Implies desired convergence rate)

• Optimization problem: required z can be obtained by solving:

max
∑
j

〈∇fj(x(t)
j ), u〉2 subject to ‖u‖ ≤ 1.

• Reduces to finding top singular vector of appropriate matrix!

Extension to `p error

When p > 2, same high-level framework applies, but:
• Requires more involved analysis to prove “progress” (uses recent works on `p
regression to show smoothness of fj).
• Optimization problem is now instance of matrix 2 7→ p norm computation – can be
solved via convex relaxations when p ≥ 2.

Experiments
The following schemes were used to derive the weight matrices for the plots.
•W1: Each element is sampled from the interval [0, 1] uniformly at random.
•W3: Generate a random binary matrix with each entry 1 with probability 0.1 and
then set the first 100 columns of first 150 rows to 1.

Error Against the Rank
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Figure: Comparison of cost of the approximation against the rank of the matrix.

Error Against the Signal-to-noise Ratio
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Figure: Comparison of cost of the approximation against the signal to noise ratio of the matrix.

Conclusions

•We study greedy pursuit algorithms for weighted low rank approximation, and show
that they yield good bi-criteria approximations with a small additive error. Holds
for `p error, for p ≥ 2, under a realistic assumption on target low rank matrix.
• Proposed algorithm is easy to implement and works well in practice.
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